#### The Creation and Application of Voxelized Dosimetric Models, and a Comparison with the Current Methodology as used for the ICRP RAPs ICRP Meeting

October 21-27, 2013 . Abu Dhabi, UAE

Kathryn Higley<sup>1</sup>, Mario Gomez-Fernandez<sup>1</sup>, Elizabeth Ruedig<sup>2</sup>, Junwei Jia<sup>1</sup>, Emily Caffrey<sup>1</sup> <sup>1</sup>Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, <sup>2</sup>Environmental and Radiological Health Sciences, Colorado State University



## C5 Mission

%G5 is concerned with radiological protection of the environment. It will aim to ensure that the development and application of approaches to environmental protection are compatible with those for radiological protection of man, and with those for protection of the environment from other hazards+



#### Evolution of two parallel pathways



of representative individuals and representative organisms

## ICRP Reference Organisms and Life Stages

| Terrestrial                                          | Freshwater                               | Marine                             |
|------------------------------------------------------|------------------------------------------|------------------------------------|
| Pine tree                                            | Frog (adult*, egg, egg<br>mass, tadpole) | Flatfish (egg, adult*)             |
| Bee (adult*, colony)                                 | Trout (adult*, egg)                      | Crab (adult*, egg<br>mass, larvae) |
| Earthworm (egg, adult*)                              | Duck (adult, eggs)                       | Seaweed                            |
| Grass (meristem, grass spike)                        |                                          |                                    |
| Deer (calf, adult)                                   |                                          |                                    |
| Rat*                                                 |                                          |                                    |
| * Indicates Voxel-based DCFs done or near completion |                                          |                                    |

## ICRP 108 Dose Calculation Approach (2008)





Simple Models Work Well With Current Approach to Biota Sampling & Dose Assessment<sup>1</sup>:



## Alternate Approach to Dose Determination: Voxel Phantoms

- Similar to human dose modeling
- Accurate anatomical depiction of internal structures
- "Built from CT and MRI images
- " Allows detailed analysis of radiation interactions





#### Why More Refined Dosimetry?



- Relate dose to effect
- Guide field measurements
- Parity with human dosimetry

1000

10000

RNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

#### **Procedure for Creation of Phantoms**

- " Image organism post mortem
- Identify and segment organs/ structures on scan (3D Doctor<sup>1</sup>)
- "Run Voxelizer<sup>1</sup> to obtain organism geometry
- "Add materials, source, and tally to Voxelizer file
- " Run MCNP<sup>1</sup> to obtain energy deposition in each organ for each source/target pair, at each energy and for each particle type
- " Calculate dose conversion factors (DCFs) for specific radionuclides



#### **Comparison Voxel : Simplified**











## Compare Calculated Dose Rates

- Experimental conditions, 1 MBq:
  - 7 radionuclides <sup>14</sup>C, <sup>36</sup>Cl, <sup>60</sup>Co, <sup>90</sup>Sr, <sup>131</sup>I, <sup>137</sup>Cs, <sup>210</sup>Po
  - 4 RAPS (flatfish, trout, crab, rat)
- Radionuclides distributed
  - Highly partitioned into single organ (S T) <u>Or</u>
  - Homogeneously in total organism mass
- Partitioning represents extreme, but not unlikely occurrence for many radionuclides



# <sup>90</sup>Sr: Rat



- Includes <sup>90</sup>Y
- Red line indicates perfect agreement between models
- Likely partitioned into organs
- Simplified model would likely underestimate organ dose



# Example: CI-36 in Crab



- <sup>36</sup>CI -beta emitter with short range
- Probably uniformly distributed in tissues
- In this simulation, homogeneous model generally predicts higher dose rates
- Homogenous model is
  largely conservative



#### Limanda Limanda (Sand Dab)



Source: Photo courtesy of Andrew Marriott, published on MLIN website







## Flatfish

- <sup>60</sup>Co -beta/gamma emitter
- Shown to concentrate in kidneys up to 200 fold
- In this simulation, no immediately discernible trends
- Likely mass and position of source organ

RNATIONAL COMMISSION ON RADIOLOG



#### Ratio of Estimated Dose Rate for 1MBq Co-60 Source in Flatfish

#### **Trout Phantom**







## <sup>137</sup>Cs Trout

- Strong beta/gamma emitter
- Distributes in soft tissues
- In this simulation, voxel model not conservative if activity partitioned strongly into muscle tissue





#### Example: <sup>60</sup>Co in Trout

- <sup>60</sup>Co -beta/gamma emitter
- In this simulation, voxel model frequently predicts higher dose rates
- Homogenous model not conservative



## **Overall Comparison**











## Flatfish:

- <sup>14</sup>C, <sup>36</sup>Cl, <sup>60</sup>Co, <sup>90</sup>Sr, <sup>131</sup>I, <sup>137</sup>Cs, <sup>210</sup>Po
- Compared 871 source/target values
- Homogeneous model
  - <sup><sup>~</sup> Conservative</sup> mainly for pure beta emitters
  - Less so for others



## Rat:

- <sup>14</sup>C, <sup>36</sup>Cl, <sup>60</sup>Co, <sup>90</sup>Sr, <sup>131</sup>l, <sup>137</sup>Cs, <sup>210</sup>Po
- Compared 166 source/target values
- Homogeneous model
  - Conservative mainly for beta gamma emitters
  - Not conservative for alpha and most pure beta



INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

# Crab:

- <sup>14</sup>C, <sup>36</sup>Cl, <sup>60</sup>Co, <sup>90</sup>Sr, <sup>131</sup>l, <sup>137</sup>Cs, <sup>210</sup>Po
- Compared 176 source/target values
- Homogeneous model
  - Conservative mainly for beta gamma emitters
  - Not conservative for alpha and most beta gamma emitters



# Trout:

- <sup>14</sup>C, <sup>36</sup>Cl, <sup>60</sup>Co,
  <sup>90</sup>Sr, <sup>131</sup>l, <sup>137</sup>Cs,
  <sup>210</sup>Po
- Compared 871
  source/target
  values
- Homogeneous model
  - Conservative only for pure beta emitters
  - <sup>~</sup> Not so for others



## Summary

- Simplified models are straight forward means to calculate dose
  - They may not be appropriately conservative (when radionuclides are highly partitioned into organs)
  - They may be <u>too</u> conservative under other circumstances
  - Organism (and organ) size is important

## Ongoing Work with Voxel Models: Bee and Worm

- Preliminary AF data obtained, but no good composition data for bee and worm
  - Dissections
  - Tissue Analysis
  - Remake models
  - New AF
  - Comparisons



## **Bee and Worm**

- Under development
- Created using micro CT
- System used in research institutes





- Challenge is finding data on
  - Tissue densities
  - Elemental composition
- Example . bee has microscopic iron deposits in fat

## Conclusions

- Results of simplified vs voxelized models do not agree well
- Examples shown are extreme cases, but suggest further need for exploration into differences between voxelized and homogeneous dose rate calculations
  - Partition coefficients
  - External and internal dose contributions
- We need to methodically assess when/where detailed dose calculations are required.

#### www.icrp.org

